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Lie symmetries of a coupled nonlinear Burgers-heat 
equation system 

G M Webb 
Department of Planetary Sciences, University of Arizona, Tucson, A 2  85721, USA 

Received 30 October 1989, in final form 18 May 1990 

Abstract. A symmetry group analysis of a coupled Burgers-heat equation system of partial 
differential equations initially introduced in a study of non-classical similarity solutions 
of the heat equation is carried out. The point Lie algebra of the system 9, is shown to 
possess a maximal solvable ideal SP with quotient algebra 93 = %/SP = sl,(R), where s12(R) 
is the Lie algebra of 2 x 2 matrices with zero trace. Analysis of the prolongation structure 
of the system yields the Backlund transformation obtained previously by Painlevt analysis. 
The Backlund transformation can be expressed as a map onto two coupled linear heat 
equations, or alternatively as a map onto Burgers equation. The role of sl,(R) in a 
seven-dimensional Lie algebra, 2, , obtained by truncating the open-ended algebraic 
prolongation structme is emphasised. 

1. Introduction 

Lie group theoretical methods of solving partial differential equations have been 
developed by a number of authors (e.g. Bluman and Cole [ 1,2], Harrison and Estabrook 
[3], Wahlquist and Estabrook [4], Ovsjannikov [SI, Olver [6] and Kaup [7]). 

In their work on non-classical similarity solutions of the heat equation 

W , , - W , = O  ( 1 . 1 )  
Bluman and Cole [ l ]  and Harrison and Estabrook [3] considered the associated 
nonlinear system 

A, + 2AA, - A,, + 2Cx = 0 
C, - C,, + 2CA, = 0 
D, - D,, + 2DA, = 0. 

( 1  -2) 

(1.3) 
(1.4) 

Integration of the characteristic equations dx/dt  = A(x, t ) ,  and d P / d t  = 
C(x, t )q+- t (x ,  t )  then leads to the generation of similarity solutions of the heat 
equation. ‘Classical’ similarity solutions of the heat equation correspond to solutions 
of the system (1.2)-( 1.4) for which A,, = 0. Kaup [7] has considered the prolongation 
structure for both Burgers equation and a ‘damped Burgers equation’. By exploiting 
an eigenvalue in the associated linear scattering equations (obtained by prolongation) 
Kaup was able to devise an inverse scattering scheme to solve the damped Burgers 
equation. Equations (1.2)-( L4), although related to Burgers equation are different 
from the equations considered by Kaup. 

Painlevi analysis of the nonlinear equations (1.2) and (1.3) by Webb [8] showed 
that the system (1.2)-( 1 .3)  has two singularity branches of interest. One of the singularity 
branches yielded a Backlund transformation that mapped the nonlinear system (1.2) 
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and (1.3) onto two coupled linear heat equations. The second singularity branch also 
yielded solutions of interest. These solutions for A(x, t )  and C(x, t )  were used to 
generate examples of non-classical similarity solutions of the heat equation. 

In the present paper, we consider some of the group theoretical properties of the 
system (1.2)-( 1.3). In section 2 we obtain the Lie group of the system (1.2)-( 1.3), and 
use this to delineate the form of the classical similarity solutions of equations (1.2) 
and (1.3). The prolongation structure and associated Lie algebra for the system 
(1.2)-( 1.3) is then obtained (section 3) by the methods of Wahlquist and Estabrook 
[4]. The Backlund transformation previously obtained by Webb [ 81 by PainlevC analysis 
is obtained from the prolongation structure. Section 4 concludes with a summary and 
discussion. 

2. Point Lie group and classical similarity solutions 

To obtain the Lie group of equations (1.2)-(1.3) we use the exterior differential forms 
approach of Harrison and Estabrook [3]. The system (1.2)-(1.3) can be represented 
by the set of forms 

a l = d x r \  dA+2A ~ A A  dt -dp A d t + 2  d C  A dt  

CY*= dx A d C  -dq A d t  + 2 C  dA A d t  
(2.1) 

(2.2) 
a 3 = p d x ~ d t - d A ~ d t  

a 4 = q  dx A d t - d C  A dt  
where ' A ' denotes the exterior product and, 'd' denotes exterior differentiation. Section- 
ing the forms (2.1)-(2.4) by making all variables depend only on x and t yields 

A, + 2AAx - px + 2 C, = 0 (2.5) 
C, - qx + 2CAx = 0 (2.6) 

P = A x  q = ex. (2.7) 
In addition the forms { a l ,  a*,  a 3 ,  a4} form a closed ideal (i.e. the exterior derivatives 
of the forms, da , ,  are also in the ideal). 

To determine the infinitesimal generators V = (V", V', VA, V', Vp, V4) of the Lie 
group admitted by the system we require that the Lie derivative of each of the a, 
( i  = 1,2,3,4)  also be in the ideal, i.e., 

4 

&(a , )  = Qjpj i, j = 1, 2 ,3 ,4  (2.8) 
j = l  

where the uij are scalars. Solving the determining equations (2.8) for V by the standard 
method (e.g. Harrison and Estabrook [3]) we find 

V'= a1+2a2t+2a, t2  (2.9) 

VA=-(2~3t+a , )A+2a3x+2a ,  (2.11) 

Vc = - ( 4 ~ 3 t + 2 a * ) C  - ( u , + u ~ x ) A - u ,  (2.12) 

V" = 2a3xt + a2x + 2a5t + a4 (2.10) 

Vp =-p(4a, t+2a2)+2a3 (2.13) 
V q  = - q ( 6 ~ 3 t + 3 ~ 2 ) - ( ~ 5 + ~ 3 x ) p - ~ 3 A  (2.14) 

where the a,, i = 1, 2, 3, 4, 5 are constants. 
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A basis {Xi, 1 C i C  5 )  for the Lie algebra % associated with the infinitesimal 
generators V of the invariance group G can be obtained by setting a i  = 1 for a fixed 
i, and a, = 0, j # i. We find 

x, =a, (2.16) 

X2 = 2ta, +xa, - AaA - 2Cac -2pa, - 3qa, (2.17) 

X3=2t2a,+2xtd,+(2x-2tA)a,+(-4tC -xA- l)d, 

+ (2-4pt)aP + (-6qt - x p  - A)a, (2.18) 

x, = a, (2.19) 

x,= 261, + 2 d ~ - A a ,  - p a q  (2.20) 

where a ,  = a / a t ,  a, = d/dx etc. The commutators are given in table 1. 
The algebra % has a maximal solvable ideal d spanned by {X,,X,) (i.e. d'= 

[d, d] = 0 (Jacobson [9], p 24)). The quotient algebra 92 = %/.d is spanned by the 
additive cosets gi = X ,  + d, 1 C i G 3 and the Levi decomposition of % gives 

%=B@d.  (2.21) 

The quotient algebra 93 is isomorphic to s12(R), the algebra of real 2 x 2 matrices with 
zero trace. To see this we note that 

z1 = $XI 2, = x, 2 3  = -x3 
forms a basis for the sub-algebra {X, , X 2 ,  X,} with 

(2.22) 

[22,Z,l= 223 [ 2 2 ,  Z,l= -22, [ 2 3 ,  2 1 1  = 2 2  (2.23) 

and Zi = {Zi + d, 1 -s is 3) spans B. On the other hand, the matrices 

0 0  w2=('  O )  w3=(o 0 1  o) 
w1=(1  0) 0 -1 

(2.24) 

have commutation relations 

[ w z ,  w3]=2w3 [W2, W,l=-2W, w,, W1l= w2 (2.25) 

and { W,, W,, W3} span sl,(R). From equations (2.23) and (2.25) we find 9 = s12(R). 
These results are similar to those obtained by Sastri and Dunn [lo], who show that 
the quotient algebra of the heat equation is isomorphic to SI,( R). 

Table 1. Commutators for the point Lie algebra. 

x, 0 2x, 2x2 0 2x4 
x2 -2x, 0 2x3 - x4 x5 
x3 -2x, -2x3 0 - XS 0 
x4 0 x4 XS 0 0 
XS -2x, - x5 0 0 0 
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We conclude this section by providing a similarity reduction of the original equations 
(1.2)-( 1.3). Integrating the characteristic equations 

dx d t  dA d C  -----=- - -  
V” V‘ V A  vc (2.26) 

we obtain similarity solutions for A and C of the form (cf Bluman and Cole [l, 21): 

A = [ 2 ~ ~ 7 t + a e ~ ’ ~ +  G ( T ) ] ~ - ” ~  (2.27) 

(2.28) 

where 

e = 2a,t2+2a2t i U ,  (2.29) 

17 = (X  - at -/3)6-1’2 (2.30) 

a = 2(u3a,- u5u2)/(2u3u, -a : )  (2.31) 

p = ( u 4 u 2 - 2 u 5 u , ) / ( 2 u 3 u , - u ~ ) .  (2.32) 

Equation (2.30) gives the similarity variable 7, obtained by integrating the equation 
dx/dt  = V x /  V’ of equations (2.26). The similarity variable rj is the same as that used 
by Bluman and Cole [ 1,2] in obtaining classical similarity solutions of the heat equation. 
Requiring the solution forms (2.27)-(2.28) for A and C to satisfy the original equations 
(1.2)-(1.3) yields ordinary differential equations for G ( 7 )  and H ( 7 ) :  

G” -2GGf-2H’(7)  + U , ( ~ G ‘ +  G )  - 2 ~ ~ ~ 3 7  = O  (2.33) 

H” -2HG’ -- GI+ a27H’+ u , a 3 ~ G + 2 a ~ H  + a l (a3+ a2a2/2)  = 0. (2.34) 

Further reduction of the system entails the solution of the ordinary differential equations 
(2.33) and (2.34). 

U , d  

2 

3. The prolongation structure 

Following the approach of Wahlquist and Estabrook [4], we search for 1-forms 

@k=dyk+Fk(Zp,Yv) dx+Gk(z , ,yv)  d t  (3.1) 
where z, = (x, t, A, C, p ,  4 ) .  The y y  are pseudopotentials and the wk are such that duk 
is in the prolonged ideal. Thus we require 

d u k = f f a , + 7 f ~ w ,  (3.2) 
where the Einstein summation convention is used for repeated indices and the 2-forms 
{az}, i = 1,2,3,4,  given by equations (2.1)-(2.4) represent the original partial differential 
equations (1.2)-(1.3). The 17: are 1-forms and the f: are scalars. The condition (3.2) 
ensures that the prolonged ideal spanned by {a , }  and the {U,} is closed. The number 
of and yJ in equation (3.1) and (3.2) is arbitrary at this point. By the usual identity 
for the exterior derivative of any differential form d dwk = 0, so that the forms (3.2) 
are exact. 
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Taking the exterior derivative of equation (3.1) and equating the result for d u k  
with that in equation (3.2) yields a set of determining equations for the F k  and Gk. 
We restrict our attention to solutions for which F k  and Gk are independent of x and 
t (i.e. Fk = Fk(A,  C, p, q, y j ) ,  Gk = Gk(A, C , p ,  q, y j ) .  We obtain 

F~=Ax:+cx:+x: (3.3) 

Gk =pX: + qX,k -ACX,k + (X: -2X:)C - X:A2+ X,kA+ X," (3.4) 

where the vector fields 

xa =Xt(Y)ak (3.5) 

(a, = a /ayk)  satisfy the commutator equations 

x5 = [x3, x21 

[X,, XI1 = x2 

[XI, X5I = 0 [x3, x4l= 0 LXl, x41+[x3, x6i=o 
[x2,x41t-[x3, x51=2x6. 

x6 = LX3 9 

[X, 9 X5 I = 2x2 LXl 9 x61 = x6 
(3.6) 

Note that these equations do not depend on the number N of prolongation variables 
assumed. Equations (3.3)-(3.6) can in fact be written in terms of XI,  X2, X3 and X, 
with the first two equations (3.6) simply defining X5 and X6. 

For the X, to form a Lie algebra we require that the Jacobi identity apply. Using 
the Jacobi identity in equations (3.6) we obtain 

w 2 ,  x6i = x5 9 x6i = 2x6 

[X, , [XI, x411= 0 [XI, [X2, X,ll= 0. 

Defining 

X7 = 1x1 7 X4I X, = [X,, &I 
allows the last two equations of (3.6) to be written as 

(3.7) 

(3.8) 

[x, ,  x6i = -x, [x3, x51=2x6-x8 (3.9) 

whereas the last two equations of (3.7) read 

1x2, x7l=o [XI I & I =  0. (3.10) 

Further operations will give further commutation relations, but does not lead to a 
closed system implying an open structure with an infinite number of prolongation 
variables. A detailed investigation of this infinite algebraic prolongation structure is 
of interest but will not be pursued further here. 

In the present paper we simply impose closure on the system by requiring that X, 
be linearly dependent on the {Xi, 1 G i 6 7). We find 

x* = -a,(X, - 2x11 + a4(X4 - X7) - (1 + (Y1Ly4)(X3 + X,) (3.11) 

where cy1 and a, are arbitrary constants. The commutators for the {Xi} are given in 
table 2. Note that this Lie algebra is seven-dimensional since X, depends linearly on 
the { X i ,  1 d i G 7). 
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We now set 

Yi = xi i = 1 ,  2 ,  3 , 4 ,  7 ,  8 

Y5 = x5 - 2 x 1  Y , = X , + X ,  

Table 2. Commutators f'or the prolongation space Lie algebra. 

(3 .12)  

X I  0 -x, -x, X ,  0 x6  x7 0 
x2 x2 0 -x ,  X8 2x2 x 5  x 8  0 
x3 x6 x 5  0 2x, - x, -x ,  ff,x, fflX8+X, 
x ,  -x ,  -x, 0 0 - f f ,X,-X,  -a,x,  u:x7 4x8 
x ,  0 -2Xz X8--2x, fflX8+X, 0 2X6 x ,  - x,  
x, -x, -x ,  x ,  a , X ,  -2x, 0 0 - x,  
x ,  -x, -x ,  - a , X 7  - f f :x ,  - X ?  0 0 0 
X8 0 0 - f f 1 x 8 - x 7  -n:x, x 8  X? 0 0 

corresponding to a change of basis vectors for the Lie algebra of table 2.  The commu- 
tators for the {Y , }  are given in table 3 .  In this form we see that the truncated Lie 
algebra Y l  has a solvabie ideal dl = { Y 4 ,  Y s ,  Y6,  Y,}. The first derived ideal dl, = 
[ d l ,  d l ]  = { Y,,  Y8},  whereas dy = [di, d't] = (0) so that d, is solJable. The quotient 
algebra $ B l = Y I / d l  is spanned by the cosets i l = - Y z + , r Q , ,  Z 2 = 2 Y l + d 1 ,  &= 
- Y, + dl  , with commutation relations 

[Z,, i,] = 2 Z 3  [ Z 2 ,  Z,] = - 2 2 ,  [Z3 ,Z1]=Z2.  
By using the map .& + W, ( i  = 1 , 2 , 3 )  where { W, , W,, W,} are the 2 x 2 matrices (2 .24)  
that span sl,(R) we see that %'1 = s12(R). The centre of the algebra 9, = (0). Thus not 
only is the quotient algebra of the point Lie group, 93 = %/d = sl,(R) (equations 
2.21-2.24) but the quotient Lie algebra in the prolongation space 93, = Y J d 1  is also 
isomorphic to sl,(R). 

A realisation of the Lie algebra of table 3 is spanned by the basis vectors 

Y, = e,:,y, -- a 
ay, 

(3 .13)  

where C!$, are the structure constants of the algebra (i.e., [ Y o ,  Y p ]  = C:p Y e ) ,  which 
can be read off table 3 .  Using the realisation (3 .13)  forthe Yo, and equations ( 3 . 1 ) - ( 3 . 4 )  

Table 3. Commutators for the { Yi, 16 i 6 8). 



Lie symmetries of a Burgers-heat equation system 3891 

where 

(3.15) 

As an example of the use of these Pfaffians consider the first order differential 
system obtained by sectioning the forms w7 and Wg (i.e. set y , = y 7 ( x ,  t ) ,  y8=y8(x, t )  
and put w7 = w 8  = 0 ) .  We obtain 

(3.16) 

(3.17) 

The integrability conditions for equations (3.16) and (3.17) (i.e. Y , , ~ ,  = y7,rx and Y8,xr = 
Y8,rx) are simply equations ( 1 . 2 )  and (1 .3)  for A and C. Equations (3.16) and (3.17) 
are similar to the linear scattering equations of the AKNS scheme (e.g. Ablowitz et a l  
[ l l ] ,  Ablowitz and Segur [12], Newel1 [13]). The parameter a ,  might at first glance 
be regarded as an eigenvalue. However, the transformations 

y7 = y ,  exp( a , x  + af t )  y’,=y, exp(a,x+a:t) (3.18) 

when substituted in equations (3.16) and (3.17) yield equations of the form (3.16) and 
(3.17) for y7 and 7 8 ,  but with a ,  = 0. Thus a ,  is not an eigenvalue. It also follows from 
equations (3.16) and (3.17) that y7 and y s  satisfy the convection-diffusion equations 

y7.r - ~ 7 , x x  - 2 a l Y 7 , x  = O  (3.19) 

y8.r -yS,xx -2aIy8,x = o  (3.20) 

with ( - 2 a l )  corresponding to the convection speed. Sectioning the other forms it is 
not difficult to show that the potentials y4 and y ,  also satisfy the convection diffusion 
equation (3.19). 

The linear matrix scheme (3.16)-(3.17) can also be used to obtain Backlund 
transformations. Setting 

Y = Y d Y S  (3 .21)  
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we obtain the Riccati equations 

y, = 7’- Ay-  C (3.22) 

y, = (AC - C,) + (A2-  A,)? -Ay2. (3.23) 

The integrability condition y,, = ytx again requires A and C to satisfy equations (1.2) 
and (1.3). From equations (3.22) and (3.23) we find that y satisfies Burgers equation 

Yr+2YY,-Yx,=0. (3.24) 

Hence equations (3.22)-(3.24) constitute a Backlund transformation between Burgers 
equation and the original equations (1.2) and (1 .3 ) .  

An alternative form of the Backlund transformation is obtained by using the 
Cole- Hopf transformation 

(3.25) y = - w,/ w 

in equation (3.24) to obtain 

w, - w,, = p ( t ) w  (3.26) 

where p is an arbitrary function of t. Noting 

C = y2 - Ay - yx (3.27) 

and setting 

A=-e, /e  e = w 6  (3.28) 

equation (1.2) becomes 

(3.29) 

where A ( t )  is an arbitrary function of t. In terms of w and 6 equations (3.27) and 
(3.28) yield 

a’ 
6, - 6,. -26-5 In w = A ( t ) 6  

ax 

(3.30) 
a 

A = -- In( w6) 
ax 

a2 
ax2 ax ax 

a In w a In 6 C=-ln w-- -. (3.31) 

Equations (3.26), (3.29), (3.30) and (3.31) are the form of the Backlund transformation 
for equations (1.2) and (1.3) derived in Webb [8] by Painled analysis. 

A more elegant derivation of the Riccati equations (3.22) and (3.23) can in fact be 
obtained by noting that if we arbitrarily set Y4= Y s =  Y6= Y7= Y,=O in table 3 we 
obtain a closed Lie algebra with basis vectors { Y, , Yz ,  Y3} which is isomorphic to 
sl,( R ) .  Exploiting the known, one-dimensional realisation of s12( R )  (e.g. Miller [ 143) 
by the one-dimensional vectors 

2 d  
Y3=-z  - 

Y2’Z dz 
d d 

Y,  = z- 
dz 

(3.32) 

equations (3.1)-(3.4) and (3.12) yield the Pfaffian 

wg= d ~ +  [ C + AZ - z’] d x +  [ C, - AC + z(A, - A 2 )  + Az’] dt. (3.33) 
Sectioning the form (3.33) yields the Riccati equations (3.22) and (3.23) but with the 
y replaced by z. 
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It is worth noting that equations (3.16) and (3.17) combined with equations (3.3) 
and (3.4) may be used to obtain a 2 x 2 matrix representation of the Lie algebra of 
table 2 as 

x1 =$( w,+ I )  x,= w, X 3 = a 1 1 +  w3 
x,= ff:I xg= w, X,=-W3 (3.34) 

x, = x, = 0 

where I is the unit 2 x 2 matrix and { W, , W,, W,} are the 2 x 2 matrices (2.24) that 
span sl,(R). 

4. Concluding remarks 

In this paper we have explored the symmetry group of a nonlinear Burgers heat 
equation system initially introduced by Bluman and Cole [ l ]  in their study of non- 
classical similarity solutions of the heat equation. As might be expected, the symmetry 
group of this system is similar to that of the heat equation in that the quotient algebra 
@ = %/d=sl , (R) ,  where d is a maximal solvable ideal and % is the Lie algebra 
(compare e.g. Sastri and Dunn [lo]). 

An investigation of the prolongation space Lie algebra was used to provide an 
alternative derivation of the Backlund transformation to the equation system (1.2) and 
(1.3) which was obtained previously by Painlev6 analysis. The Backlund transformation 
was obtained by forcing closure on the algebra at an appropriate level. The analysis 
also yielded a 2 x 2 linear matrix system (equations (3.16) and (3.17)) with integrability 
conditions (1.2) and (1.3). 

It was also shown that the truncated seven dimensional Lie algebra 2’1 in the 
prolongation space possessed a maximal solvable ideal d, , with quotient algebra 
a1 = 2 J d l  = sl,(R). This suggests that sl,(R) should also play a major role in the 
open ended algebraic prolongation structure of which 0, is a truncated version. 
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